

Environment,
Energy Security
& Sustainability
SYMPOSIUM & EXHIBITION

Waste to Energy Potential – A High Concentration Anaerobic Bioreactor

Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date 23 May 2010

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate or mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 23 MAY 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	red 2 to 00-00-2012	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Waste to Energy P	5b. GRANT NUMBER					
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PROJECT NUMBER	
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ARCADIS/Malcolm Pirnie,630 Plaza Drive, Suite 200 ,Highlands Ranch,CO,80129					8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
	OTES DIA Environment, I 12 in New Orleans, I				um & Exhibition	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 32	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction

- Renewable energy and landfill diversion key for Department of Defense.
- The National Defense Authorization Act of 2010:
 - 25% of energy needs from renewable energy sources by 2025.
- Strategic Sustainability Performance Plan 2011:
 - Divert 50% of non-hazardous solid waste from the waste stream by 2015.
 - 254 million tons of solid waste each year
- Some states have similar goals and objectives.
 - Organic waste collection programs exist in FL, CA, WA, AZ VA, MN, OH, PA, MD, and NC.
- Solid waste management an increasing challenge
 - high cost of landfill management,
 - transportation costs,
 - tipping fees, etc.
- ARCADIS' High Concentration Anaerobic Bioreactor (HCAB) process addresses these issues.

Anaerobic Digestion

- What does it do?
 - Offers sustainability by addressing renewable energy, waste diversion, and beneficial reuse
- How does it work?
 - Uses anaerobic digestion in an energy-efficient, minimum-capacity tank, resulting in high energy output
 - Uses the organic portion of solid waste (such as food waste, paper products, and agricultural waste) to fuel an anaerobic digestion process
 - bacteria consume approximately 50-70% of the solids placed in the bioreactor and, generate a biogas
- What do you get?
 - Biogas that can be used to generate electricity
 - Residual solids that can be used as a soil amendment

Anaerobic Digestion Steps

Solubilization & breakdown of complex organics by microbes in O₂ depleted environment

Complex microbes and fermentative bacteria break down organic carbon to VFAs

Acetogens break down VFAs to CH₃CO₂⁻ and H₂⁺ Acetoclastic methanogens break down CH₃CO₂⁻ to CO₂ and H₂O Hydrogenotrophic methanogens convert the H₂ and CO₂ to CH₄

HCAB Timeline

2006-07 Field pilot

2005-07 Review and Concept 2007 Bench Studies and Patent

Application

2010 In Patent Approved St

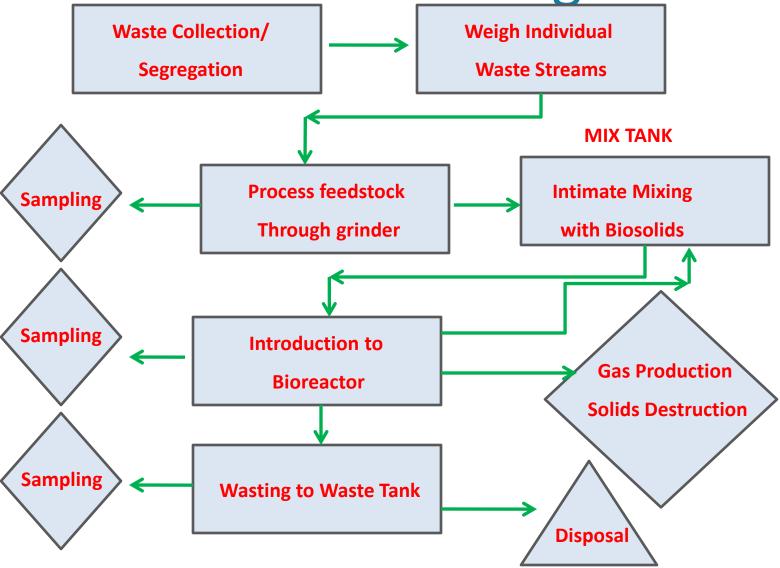
2011 Initiate Pilot Study at Eglin AFB

HCAB Operating Process

- What is the HCAB?
 - A unique combination of existing technologies.
 Advancements allow the reactor to be operated at high solids concentrations
- What is special about it?
 - Patented internal rake arm for solids control
 - High solids concentration feedstock
 - High volatile solids loading
- Practical features:
 - The process uses naturally occurring bacteria, also found in landfills, wastewater digesters
 - The equipment design is based on standard equipment
 - There is no need for the purchase of specialized spare parts

Eglin AFB Project Overview

- ARCADIS studied available waste streams at Eglin Air Force Base and determined the quantity and quality of the waste
- ARCADIS installed a pilot system capable of processing up to 700 pounds per day of organic waste
- A full scale system is planned, capable of processing municipal solid waste
- Currently the Pilot Study has been completed and design of the fullscale system is underway

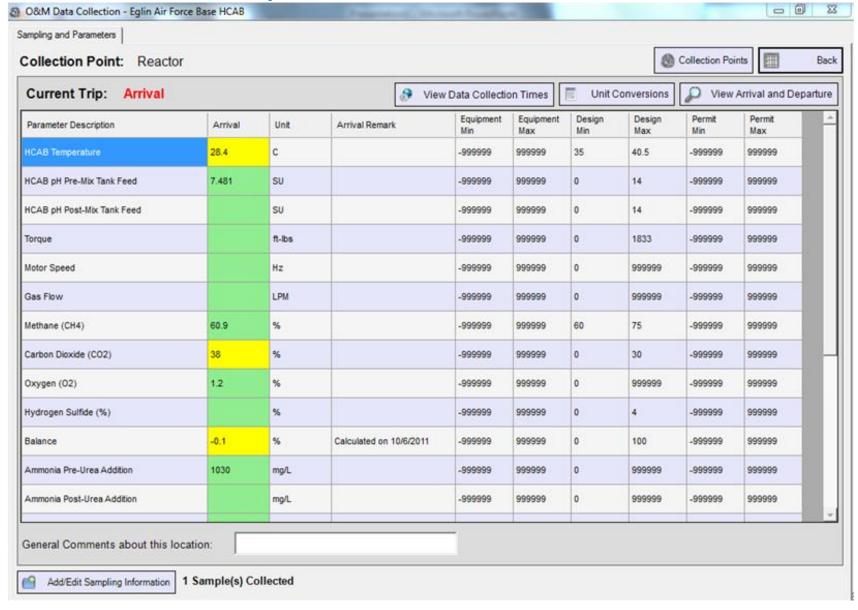


Objectives of the Demo

- Establish the inoculation/startup procedures
- Optimize presorting requirements
- Evaluate biogas quality
- Establish biogas pre-conditioning requirements
- Understand the cause of upset conditions
- Determine
 - optimal mixture of feedstock
 - biological kinetics at pseudo-steady state
 - optimal solids concentration
 - torque requirements for mixing
 - optimal operating temperature
 - solids and volatile solids destruction
 - biogas volume
 - nutrient value of waste sludge
 - composition of wastewater side streams

Process Flow Diagram

Pilot Plant


Field Measurement Summary

Mix Tank	Reactor	Waste Tank	
рН	Methane	Load Cell Data	
Temperature	Gas flow		
Load Cell Data	Torque		
Feedstock Density	Motor speed		
	Solids Density		
	рН		
	Temperature		
	Pump status		

Snapshot - Data Collection

Feedstock Addition

Operational Summary

Feedstock	Mix Tank	Bioreactor	Waste Tank
Collection	Biosolids Addition	Waste/ Recycle	Waste Solids Storage
Preparation	Mixing	Biogas Production	Sampling
Grinding		Sampling	
Sampling		Field Analysis Sampling	

Composition Summary

 Composition testing determined the effects of different waste streams on the overall chemistry.

Composition 1

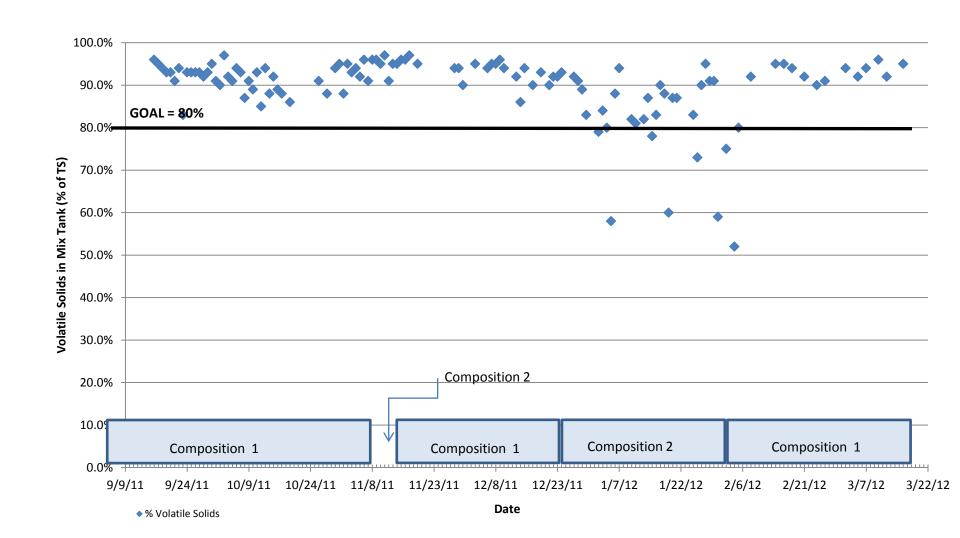
- Food Waste
- Paper Towel Waste

Composition 2

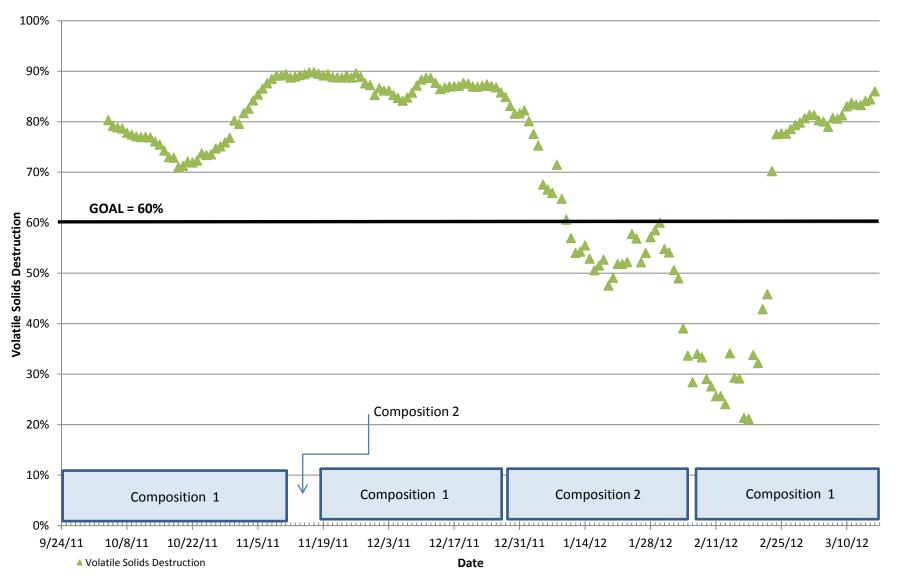
- Food Waste
- Paper Towel Waste
- Food Grade Grease
- Stable Waste
- Wood Waste

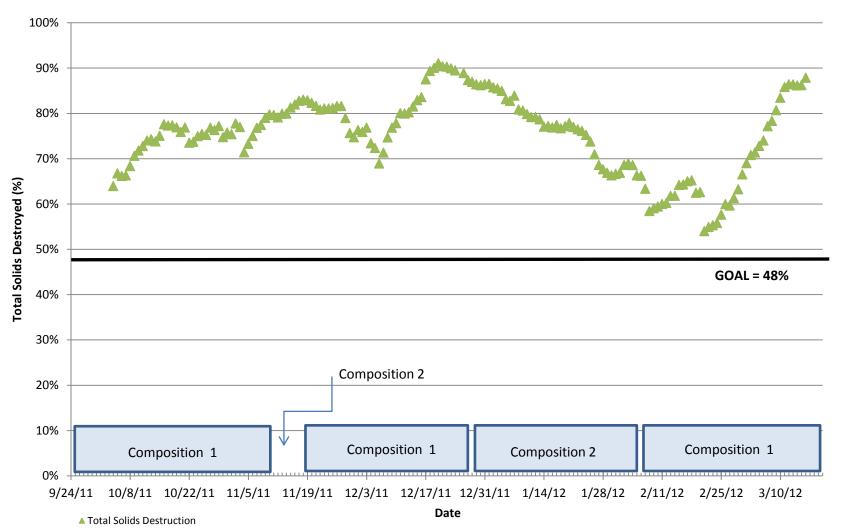
Data Compilation

- Measure actual results against the target goals & objectives
- Extrapolate the results to a full scale system
- Determine actual energy output potential for a full scale system


Volatile and Total Solids

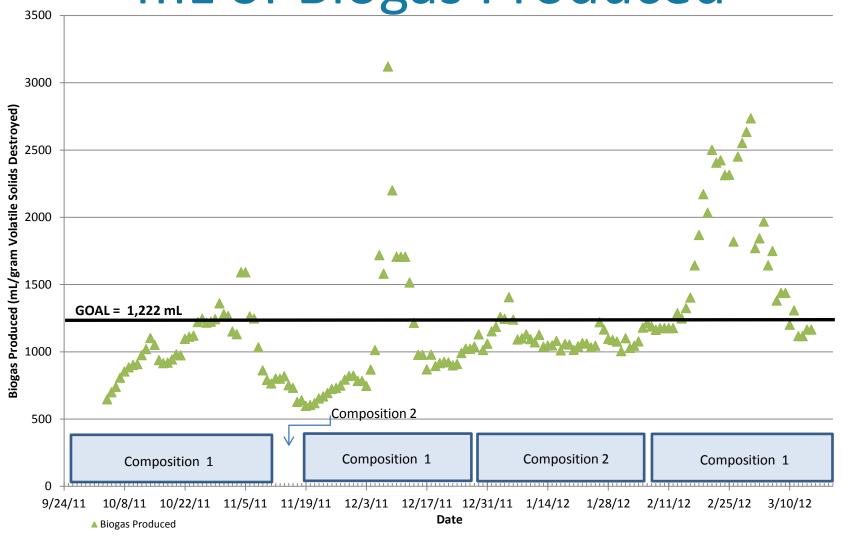
- Volatile Solids = food for microbes
 - high VS loading and corresponding high
 VS destruction = higher efficiency
- Volatile Solids in Feedstock
 - Goal 80 %
 - Actual for Composition 1: Average 92 %
 - Actual for Composition 2: Average 70%
- Volatile Solids Destruction in bioreactor
 - Goal 60 %
 - Actual for Composition 1: Average 79.4%
 - Actual for Composition 2: Average 76.8%




Volatile Solids Composition

Volatile Solids Destruction

Total Solids Destruction


Biogas Production

- Biogas contains methane = fuel source
- Biogas measured by flow meter
- Biogas generated was correlated to mass of volatile solids destroyed
- Biogas produced per unit of VS destroyed
 - Goal 1,222 ml/g VS destroyed
 - Composition 1 1,289 ml/g VS destroyed
 - Composition 2 1,076 ml/g VS destroyed
- Methane Content
 - Goal 70 %
 - Actual for Composition 1 55%
 - Actual for Composition 2 53%

mL of Biogas Produced

Operational Challenges

- Mass of Feedstock
- Mix Tank pH Stability
- Bioreactor Temperature
- Bioreactor Foaming
- Materials Processing
 - Mechanical/Pumping
 - Inert Material
- Biogas Measurement

Research and Development Demonstration

R&D successfully demonstrated:

- Technology's ability to use organic waste to generate a renewable energy source
- Alternative to landfill
- Total and Volatile solids destruction
- Energy production met or exceeded target ranges
- Best feedstock food waste and paper towels
- Design adaptations required for full scale
- Economic Evaluation ongoing economics of full scale system dependent on available feedstock

Full Scale Design Sustainability Objectives

Ongoing activities for the marketable full-scale product

- ✓ Further development of the Technology (continued R&D)
- ✓ Confirm O&M cost for a full scale system
- ✓ Scalable design criteria to enhance operation and biogas production
- ✓ Applicability to larger scale
- ✓ Verification of power generation using a microturbine
- ✓ Refinement of the financial model and ROI for full scale

Full Scale Design Objectives

- Maximize VSL / minimize reactor footprint
- Minimize equipment power consumption
- Minimize building footprint
- Maximize efficiency for MSW sorting
- Maximize biogas production/energy production
- Maximize waste application
- Maximize TS input to the HCAB
- Consider other applications, such as forward operating installations

Acknowledgments

ARCADIS would like to thank the following:

- Mr. Kevin Porteck and Margaret Douchand AFCEE
- Mr. Jim Reese
 Eglin Air Force Base
- Mr. Dennis Lundquist, Chris Coonfare, and Dr. Mike Vor Fahnestock
 Battelle National Lab
- Mr. Robert Breckenridge Idaho National Lab
- Ms. Hilda R. Quinones
 TEAM Integrated Engineering, Inc.

Imagine the result

Presenter: Scott Murphy, ARCADIS

Title: Waste to Energy Potential

Email: scott.murphy@arcadis-us.com

